Introduction
This article presents a case study of using AQL queries for detecting complex money laundering and financial crime patterns. While there have been multiple publications about the advantages of graph databases for fraud detection use cases, few of them provide concrete examples of implementing detection of complex fraud patterns that would work in real-world scenarios.
This case study is based on a third-party transaction data generator, which is designed to simulate realistic transaction graphs of any size. The generator disguises complex financial fraud patterns of two kinds:
- Circular money flows: a big amount of money is going through different nodes and comes back to the source node.
- Indirect money transfers: a big amount of money is sent from source node to a target node over a multi-layered network of intermediate accounts.