Machine Learning Archives - ArangoDB

Sign up for ArangoDB Cloud

Before signing up, please accept our terms & conditions and privacy policy.

What to expect after you signup
You can try out ArangoDB Cloud FREE for 14 days. No credit card required and you are not obligated to keep using ArangoDB Cloud.

At the end of your free trial, enter your credit card details to continue using ArangoDB Cloud.

If you decide that ArangoDB Cloud is not (yet) for you, you can simply leave and come back later.

recommendMovies

Integrate ArangoDB with PyTorch Geometric to Build Recommendation Systems

00ArangoML, General, Graphs, how to, Machine LearningTags: , , , ,

Estimated reading time: 20 minutes

In this blog post, we will build a complete movie recommendation application using ArangoDB and PyTorch Geometric. We will tackle the challenge of building a movie recommendation application by transforming it into the task of link prediction. Our goal is to predict missing links between a user and the movies they have not watched yet.

More info
scatter plot graphsage

A Comprehensive Case-Study of GraphSage using PyTorchGeometric and Open-Graph-Benchmark

00ArangoML, General, Graphs, how to, Machine LearningTags: , , , , , ,

Estimated reading time: 15 minute

This blog post provides a comprehensive study on the theoretical and practical understanding of GraphSage, this notebook will cover:

  • What is GraphSage
  • Neighbourhood Sampling
  • Getting Hands-on Experience with GraphSage and PyTorch Geometric Library
  • Open-Graph-Benchmark’s Amazon Product Recommendation Dataset
  • Creating and Saving a model
  • Generating Graph Embeddings Visualizations and Observations
More info

ArangoML Series: Multi-Model Collaboration

00ArangoML, General, Graphs, Machine LearningTags: , , ,

Estimated reading time: 8 minutes

Multi-Model Machine Learning

This article looks at how a team collaborating on a real-world machine learning project benefits from using a multi-model database for capturing ML meta-data.

The specific points discussed in this article are how:

  • The graph data model is superior to relational for ML meta-data storage.
  • Storing ML experiment objects is natural with multi-model.
  • ArangoML promotes collaboration due to the flexibility of multi-model.
  • ArangoML provides ops logging and performance analysis.
ArangoML Pipeline Complete pipeline - ArangoDB Machine Learning
More info

ArangoML Series: Intro to NetworkX Adapter

00ArangoML, General, Graphs, how to, Machine LearningTags: , , , , ,

Estimated reading time: 3 minutes

This post is the fifth in a series of posts introducing the ArangoML features and tools. This post introduces the NetworkX adapter, which makes it easy to analyze your graphs stored in ArangoDB with NetworkX.

In this post we:

  • Briefly introduce NetworkX
  • Explore the IMDB user rating dataset
  • Showcase the ArangoDB integration of NetworkX
  • Explore the centrality measures of the data using NetworkX
  • Store the experiment with arangopipe

This notebook is just a slice of the full-sized notebook available in the ArangoDB NetworkX adapter repository. It is summarized here to better fit the blog post format and provide a quick introduction to using the NetworkX adapter. 

ArangoML Pipeline Cloud graphic showing an example machine learning pipeline
More info

ArangoML Part 4: Detecting Covariate Shift in Datasets

00ArangoML, General, Graphs, Machine LearningTags: ,

Estimated reading time: 1 minute

This post is the fourth in a series of posts introducing ArangoML and showcasing its benefits to your machine learning pipelines. Until now, we have focused on ArangoML’s ability to capture metadata for your machine learning projects, but it does much more. 

In this post we:

  • Introduce the concept of covariate shift in datasets
  • Showcase the built-in dataset shift detection API
ArangoML Pipeline Complete pipeline - ArangoDB Machine Learning
More info

ArangoML Part 3: Bootstrapping and Bias Variance

00ArangoML, General, Graphs, Machine LearningTags: ,

Estimated reading time: 2 minutes

This post is the third in a series of posts about machine learning and showcasing the benefits ArangoML adds to your machine learning pipelines. In this post we:

  • Introduce bootstrapping and bias-variance concepts
  • Estimate and analyze the variance of the model from part 2
  • Capture the metadata for this activity with arangopipe
ArangoML Pipeline Cloud
More info