Introduction to Fuerte – The ArangoDB C++ Driver

00GeneralTags: ,

In this post, we will introduce you to our new ArangoDB C++ diver fuerte. fuerte allows you to communicate via HTTP and VST with ArangoDB instances. You will learn how to create collections, insert documents, retrieve documents, write AQL Queries and how to use the asynchronous API of the driver.

Requirements (Running the sample)

Please download and inspect the sample described in this post. The sample consists of a C++ – Example Source Code – File and a CMakeLists.txt. You need to install the fuerte diver, which can be found on github, into your system before compiling the sample. Please follow the instructions provided in the drivers README.md. Read More

Performance analysis with pyArango: Part III Measuring possible capacity with usage Scenarios

00General, how to, PerformanceTags: , , , , ,

So you measured and tuned your system like described in the Part I and Part II of these blog post series. Now you want to get some figures how many end users your system will be able to serve. Therefore you define “scenarios” which will be typical for what your users do.
One such a user scenario could i.e. be:

  • log in
  • do something
  • log out

Since your users won’t nicely queue up and wait for other users to finish their business, the pace you need to test your defined system is “starting n scenarios every second”. Many scenarios simulating different users may be running in parallel. If your scenario would require 10 seconds to finish, and you’d start 1 per second, that means that your system needs to be capable to process 10 users in parallel. If it can’t handle that, you will see that more than 10 sessions are running in parallel, and the time required to handle such a scenario will lengthen. You will see the server resource usage go up and up, and finally have it burst in flames.
Read more

Performance analysis with pyArango: Part II
Inspecting transactions

00GeneralTags: , ,

Following the previous blog post on performance analysis with pyArango, where we had a look at graphing using statsd for simple queries, we will now dig deeper into inspecting transactions. At first, we split the initialization code and the test code.

Initialisation code

We load the collection with simple documents. We create an index on one of the two attributes: Read more

Performance analysis using pyArango Part I

00GeneralTags: , ,

Usually, your application will persist of a set of queries on ArangoDB for one scenario (i.e. displaying your user’s account information etc.) When you want to make your application scale, you’d fire requests on it, and see how it behaves. Depending on internal processes execution times of these scenarios vary a bit.

We will take intervals of 10 seconds, and graph the values we will get there:

  • average – all times measured during the interval, divided by the count.
  • minimum – fastest requests
  • maximum – slowest requests
  • the time “most” aka 95% of your users may expect an answer within – this is called 95% percentile

Read more

From Zero to Advanced Graph Query Knowledge with ArangoDB

00General, Graphs, Query LanguageTags: , ,

Thinking about your data as a highly connected set of information is a powerful way to gain insights, solve problems and bring products faster into the hands of your users.

Unlike other databases, relationships take the first priority in graph databases and with ArangoDBs multi-model approach for graphs, documents and key/value pairs you can even switch between models or combine them in a single query.

The graph concept is booming but still new to many. So we invested a few bazillion coffees and some night shifts to come up with a good plan for a Graph Course:

Read more

Alpha3 of ArangoDB 3.2: Support for Distributed Graph Processing

00ReleasesTags: ,

The next alpha release of the upcoming ArangoDB 3.2 is available for testing. You can download and install alpha3 here.

Moving forward

As ArangoDB 3.2 will include several new features and improvements, we realized that the release model that we currently follow has room for improvement. Going forward we will introduce milestone releases with ArangoDB 3.3. For this major release you will see a bit more alphas. You can read detailed info about the new structure model here.

Pregel computing model

In this alpha we introduce support for incremental graph processing algorithms in a single mode server as well as in the cluster. Read more

Announcing ArangoDB Online Meetup and the Upcoming Webinar

01GeneralTags: ,

Today we are glad to announce the start of ArangoDB Online meetup. As our international open-source community is growing with every passing day, we keep getting requests from members around the world on doing a tech meet or a short demo on ArangoDB. Quite a few members have already taken the initiative of presenting at conferences and local meetups – big “thank you” for that! Adding to that effort, it’s high time that we all moved to that one place where we can all connect and everyone has a chance to give/ participate in a talk. And what better way is there to bring us all together than meeting online? Read more

arangochair – a tool for listening to changes in ArangoDB

02GeneralTags: ,

The ArangoDB team gave me an opportunity to write a tutorial about arangochair. Arangochair is the first attempt to listen for changes in the database and execute actions like pushing a document to the client or execute an AQL query. Currently it is limited to single nodes.

This tutorial is loosely based on the example at baslr/arangochair-serversendevents-demo

arangochair is a Node.js module hosted on npm which make it fairly easy to install. Just run
npm install arangochair and its installed. Read more

Do you like ArangoDB?
icon-githubStar this project on GitHub.
Star ArangoDB on GitHub