
Fishing Graphs in a Hadoop DataLake

Max Neunhöffer

Düsseldorf, 21 February 2018

www.arangodb.com

www.arangodb.com

What is a graph?

E

A

C

D

F

B

pq

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

sin(x)

Social networks (edges are friendship)
Dependency chains
Computer networks

Citations
Hierarchies
Indeed any relation

Sometimes directed, sometimes undirected.

What is a graph?

E

A

C

D

F

B

pq

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

sin(x)

Social networks (edges are friendship)
Dependency chains
Computer networks

Citations
Hierarchies

Indeed any relation
Sometimes directed, sometimes undirected.

What is a graph?

E

A

C

D

F

B

pq

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

sin(x)

Social networks (edges are friendship)
Dependency chains
Computer networks

Citations
Hierarchies
Indeed any relation

Sometimes directed, sometimes undirected.

What is a graph?

E

A

C

D

F

B

pq

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

sin(x)

Social networks (edges are friendship)
Dependency chains
Computer networks

Citations
Hierarchies
Indeed any relation

Sometimes directed, sometimes undirected.

Usual approach: data in HDFS, use Spark/GraphFrames
v = spark.read.option("header",true).csv("hdfs://...")
e = spark.read.option("header",true).csv("hdfs://...")
g = GraphFrame(v,e)

g.inDegrees.show()

g.outDegrees.groupBy("outDegree").count().sort("outDegree").show(1000)

g.vertices.groupBy("GYEAR").count().sort("GYEAR").show()

g.find("(a)-[e]->(b);(b)-[ee]->(c)").filter("a.id = 6009536").count()

results = g.pageRank(resetProbability=0.01, maxIter=3)

Limitations/missed opportunities
Ad hoc queries
Often, one would like to perform smallish ad hoc queries on graph data.

Want to bring down latency from minutes to seconds or from seconds
to milliseconds. Usually, we would like to run many of them.

Examples:
friends of friends of one person
find all immediate dependencies of one item
find all direct and indirect citations of one article
find all descendants of one member of a hierarchy

IDEA: Use a Graph Database

Limitations/missed opportunities
Ad hoc queries
Often, one would like to perform smallish ad hoc queries on graph data.Want to bring down latency from minutes to seconds or from seconds
to milliseconds.

Usually, we would like to run many of them.
Examples:

friends of friends of one person
find all immediate dependencies of one item
find all direct and indirect citations of one article
find all descendants of one member of a hierarchy

IDEA: Use a Graph Database

Limitations/missed opportunities
Ad hoc queries
Often, one would like to perform smallish ad hoc queries on graph data.Want to bring down latency from minutes to seconds or from seconds
to milliseconds. Usually, we would like to run many of them.

Examples:
friends of friends of one person
find all immediate dependencies of one item
find all direct and indirect citations of one article
find all descendants of one member of a hierarchy

IDEA: Use a Graph Database

Limitations/missed opportunities
Ad hoc queries
Often, one would like to perform smallish ad hoc queries on graph data.Want to bring down latency from minutes to seconds or from seconds
to milliseconds. Usually, we would like to run many of them.

Examples:
friends of friends of one person
find all immediate dependencies of one item
find all direct and indirect citations of one article
find all descendants of one member of a hierarchy

IDEA: Use a Graph Database

Limitations/missed opportunities
Ad hoc queries
Often, one would like to perform smallish ad hoc queries on graph data.Want to bring down latency from minutes to seconds or from seconds
to milliseconds. Usually, we would like to run many of them.

Examples:
friends of friends of one person
find all immediate dependencies of one item
find all direct and indirect citations of one article
find all descendants of one member of a hierarchy

IDEA: Use a Graph Database

Graph Databases

Graph Databases
Can store and persist graphs.

However, the crucial ingredient of a graphdatabase is their ability to do graph queries.
Graph queries:

Find paths in graphs according to a pattern.
Find everything reachable from a vertex.
Find shortest paths between two given vertices.

=⇒ Graph Traversals Crucial: Number of steps a priori unknown!

Graph Databases

Graph Databases
Can store and persist graphs. However, the crucial ingredient of a graphdatabase is their ability to do graph queries.

Graph queries:
Find paths in graphs according to a pattern.
Find everything reachable from a vertex.
Find shortest paths between two given vertices.

=⇒ Graph Traversals Crucial: Number of steps a priori unknown!

Graph Databases

Graph Databases
Can store and persist graphs. However, the crucial ingredient of a graphdatabase is their ability to do graph queries.

Graph queries:
Find paths in graphs according to a pattern.
Find everything reachable from a vertex.
Find shortest paths between two given vertices.

=⇒ Graph Traversals Crucial: Number of steps a priori unknown!

Graph Databases

Graph Databases
Can store and persist graphs. However, the crucial ingredient of a graphdatabase is their ability to do graph queries.

Graph queries:
Find paths in graphs according to a pattern.
Find everything reachable from a vertex.
Find shortest paths between two given vertices.

=⇒ Graph Traversals

Crucial: Number of steps a priori unknown!

Graph Databases

Graph Databases
Can store and persist graphs. However, the crucial ingredient of a graphdatabase is their ability to do graph queries.

Graph queries:
Find paths in graphs according to a pattern.
Find everything reachable from a vertex.
Find shortest paths between two given vertices.

=⇒ Graph Traversals Crucial: Number of steps a priori unknown!

Graph Traversals
A

B

C

D

J

E

H

F

G

A

Graph Traversals
A

B

C

D

J

E

H

F

G

AB

Graph Traversals
A

B

C

D

J

E

H

F

G

ABC

Graph Traversals
A

B

C

D

J

E

H

F

G

ABCE

Graph Traversals
A

B

C

D

J

E

H

F

G

ABCED

Graph Traversals
A

B

C

D

J

E

H

F

G

ABCEDJ

Graph Traversals
A

B

C

D

J

E

H

F

G

ABCEDJ

Graph Traversals
A

B

C

D

J

E

H

F

G

ABCEDJF

Graph Traversals
A

B

C

D

J

E

H

F

G

ABCEDJFG

Graph Traversals
A

B

C

D

J

E

H

F

G

ABCEDJFG

Graph Traversals
A

B

C

D

J

E

H

F

G

ABCEDJFGH

The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,

with a common query language for all three data models.

Important:
Is able to compete with specialised products on their turf.
Allows for polyglot persistence using a single database technology.
In a microservice architecture, there will be several different deployments.

The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
Is able to compete with specialised products on their turf.
Allows for polyglot persistence using a single database technology.
In a microservice architecture, there will be several different deployments.

The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
Is able to compete with specialised products on their turf.

Allows for polyglot persistence using a single database technology.
In a microservice architecture, there will be several different deployments.

The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
Is able to compete with specialised products on their turf.
Allows for polyglot persistence using a single database technology.

In a microservice architecture, there will be several different deployments.

The Multi-Model Approach

Multi-model database
A multi-model database combines a document store with a graph
database and is at the same time a key/value store,
with a common query language for all three data models.

Important:
Is able to compete with specialised products on their turf.
Allows for polyglot persistence using a single database technology.
In a microservice architecture, there will be several different deployments.

Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,

with transaction semantics,
allowing to do joins,
and to do graph queries,
AQL is independent of the driver used and
offers protection against injections by design.

Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,
with transaction semantics,

allowing to do joins,
and to do graph queries,
AQL is independent of the driver used and
offers protection against injections by design.

Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,
with transaction semantics,
allowing to do joins,

and to do graph queries,
AQL is independent of the driver used and
offers protection against injections by design.

Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,
with transaction semantics,
allowing to do joins,
and to do graph queries,

AQL is independent of the driver used and
offers protection against injections by design.

Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,
with transaction semantics,
allowing to do joins,
and to do graph queries,
AQL is independent of the driver used and

offers protection against injections by design.

Powerful query language

AQL
The built in Arango Query Language allows

complex, powerful and convenient queries,
with transaction semantics,
allowing to do joins,
and to do graph queries,
AQL is independent of the driver used and
offers protection against injections by design.

is a Data Center Operating System App
These days, computing clusters run Data Center Operating Systems.

Idea
Distributed applications can be deployed as easily as one installs a mobileapp on a phone.
Cluster resource management is automatic.
This leads to significantly better resource utilization.
Fault tolerance, self-healing and automatic failover is guaranteed.

runs on Apache Mesos and kubernetes clusters.

is a Data Center Operating System App
These days, computing clusters run Data Center Operating Systems.

Idea
Distributed applications can be deployed as easily as one installs a mobileapp on a phone.

Cluster resource management is automatic.
This leads to significantly better resource utilization.
Fault tolerance, self-healing and automatic failover is guaranteed.

runs on Apache Mesos and kubernetes clusters.

is a Data Center Operating System App
These days, computing clusters run Data Center Operating Systems.

Idea
Distributed applications can be deployed as easily as one installs a mobileapp on a phone.
Cluster resource management is automatic.

This leads to significantly better resource utilization.
Fault tolerance, self-healing and automatic failover is guaranteed.

runs on Apache Mesos and kubernetes clusters.

is a Data Center Operating System App
These days, computing clusters run Data Center Operating Systems.

Idea
Distributed applications can be deployed as easily as one installs a mobileapp on a phone.
Cluster resource management is automatic.
This leads to significantly better resource utilization.

Fault tolerance, self-healing and automatic failover is guaranteed.

runs on Apache Mesos and kubernetes clusters.

is a Data Center Operating System App
These days, computing clusters run Data Center Operating Systems.

Idea
Distributed applications can be deployed as easily as one installs a mobileapp on a phone.
Cluster resource management is automatic.
This leads to significantly better resource utilization.
Fault tolerance, self-healing and automatic failover is guaranteed.

runs on Apache Mesos and kubernetes clusters.

is a Data Center Operating System App
These days, computing clusters run Data Center Operating Systems.

Idea
Distributed applications can be deployed as easily as one installs a mobileapp on a phone.
Cluster resource management is automatic.
This leads to significantly better resource utilization.
Fault tolerance, self-healing and automatic failover is guaranteed.

runs on Apache Mesos and kubernetes clusters.

Back to topic: Cloud orchestration as infrastructure

Cloud orchestration is the perfect environment for our needs
It manages for us:

Software deployment
Resource management (increased utilization)
Service discovery

Allows to plug things together!
Consequence:We can easily deploy multiple systems alongside each other.
Example: HDFS, Spark and ArangoDB

Back to topic: Cloud orchestration as infrastructure

Cloud orchestration is the perfect environment for our needs
It manages for us:

Software deployment
Resource management (increased utilization)
Service discovery
Allows to plug things together!

Consequence:We can easily deploy multiple systems alongside each other.
Example: HDFS, Spark and ArangoDB

Back to topic: Cloud orchestration as infrastructure

Cloud orchestration is the perfect environment for our needs
It manages for us:

Software deployment
Resource management (increased utilization)
Service discovery
Allows to plug things together!

Consequence:We can easily deploy multiple systems alongside each other.

Example: HDFS, Spark and ArangoDB

Back to topic: Cloud orchestration as infrastructure

Cloud orchestration is the perfect environment for our needs
It manages for us:

Software deployment
Resource management (increased utilization)
Service discovery
Allows to plug things together!

Consequence:We can easily deploy multiple systems alongside each other.
Example: HDFS, Spark and ArangoDB

Deployment on kubernetes (work in progress)
Deploy the ArangoDB operator to k8s
kubectl create -f arangodb-operator.yaml

Deploy an ArangoDB cluster instance
kubectl create -f simple-cluster.yaml

simple-cluster.yaml

apiVersion: "database.arangodb.com/v1alpha"
kind: "ArangoDeployment"
metadata:

name: "example-arangodb-cluster"
spec:

mode: cluster

Deployment on kubernetes (work in progress)
Deploy the ArangoDB operator to k8s
kubectl create -f arangodb-operator.yaml

Deploy an ArangoDB cluster instance
kubectl create -f simple-cluster.yaml

simple-cluster.yaml

apiVersion: "database.arangodb.com/v1alpha"
kind: "ArangoDeployment"
metadata:

name: "example-arangodb-cluster"
spec:

mode: cluster

Import data into ArangoDB
hdfs dfs -get hdfs://name-1-node.hdfs.mesos:9001/patents.csv
hdfs dfs -get hdfs://name-1-node.hdfs.mesos:9001/citations.csv

dcos package install arangodb3

arangosh \
--server.endpoint srv://_arangodb3-coordinator1._tcp.arangodb3.mesos

var g = require("@arangodb/general-graph");
var G = g._create("G",[g._relation("citations",["patents"],["patents"])]);

arangoimp --collection patents --file patents.csv --type csv \
--server.endpoint srv://_arangodb3-coordinator1._tcp.arangodb3.mesos

arangoimp --collection citations --file citations.csv --type csv \
--server.endpoint srv://_arangodb3-coordinator1._tcp.arangodb3.mesos

Run a graph traversal
This query finds patents cited by patents/6009503 (depth ≤ 3) recursively:

Recursive traversal, 500 results, 317 ms
FOR v IN 1..3 OUTBOUND "patents/6009503" GRAPH "G"

RETURN v

This one finds all patents that cite any of those cited by patents/6009503:
One step forward and one back, 35 results, 59 ms
FOR v IN 1..1 OUTBOUND "patents/6009503" GRAPH "G"

FOR w IN 1..1 INBOUND v._id GRAPH "G"
FILTER w._id != v._id
RETURN w

Run a graph traversal
This query finds patents cited by patents/6009503 (depth ≤ 3) recursively:

Recursive traversal, 500 results, 317 ms
FOR v IN 1..3 OUTBOUND "patents/6009503" GRAPH "G"

RETURN v

This one finds all patents that cite any of those cited by patents/6009503:
One step forward and one back, 35 results, 59 ms
FOR v IN 1..1 OUTBOUND "patents/6009503" GRAPH "G"

FOR w IN 1..1 INBOUND v._id GRAPH "G"
FILTER w._id != v._id
RETURN w

Run a graph traversal
This query finds all patents that cite patents/3541687 directly or in two steps:

Recursive traversal backwards, 22 results, 15 ms
FOR v IN 1..2 INBOUND "patents/3541687" GRAPH "G"

RETURN v._key

This one counts all patents that cite patents/3541687 recursively:
Deep recursion backwards, count 398, 311 ms
FOR v IN 1..10 INBOUND "patents/3541687" GRAPH "G"

COLLECT WITH COUNT INTO c
RETURN c

Run a graph traversal
This query finds all patents that cite patents/3541687 directly or in two steps:

Recursive traversal backwards, 22 results, 15 ms
FOR v IN 1..2 INBOUND "patents/3541687" GRAPH "G"

RETURN v._key

This one counts all patents that cite patents/3541687 recursively:
Deep recursion backwards, count 398, 311 ms
FOR v IN 1..10 INBOUND "patents/3541687" GRAPH "G"

COLLECT WITH COUNT INTO c
RETURN c

Yet another approach

If your graph data changes rapidly in a transactional fashion...

Graph database as primary data store
You can turn things around:

Keep and maintain the graph data in a graph database.
Regularly dump to HDFS and run larger analysis jobs there.

Or: Use ArangoDB’s Spark Connector:
https://github.com/arangodb/arangodb-spark-connector

https://github.com/arangodb/arangodb-spark-connector

Yet another approach

If your graph data changes rapidly in a transactional fashion...
Graph database as primary data store
You can turn things around:

Keep and maintain the graph data in a graph database.

Regularly dump to HDFS and run larger analysis jobs there.
Or: Use ArangoDB’s Spark Connector:

https://github.com/arangodb/arangodb-spark-connector

https://github.com/arangodb/arangodb-spark-connector

Yet another approach

If your graph data changes rapidly in a transactional fashion...
Graph database as primary data store
You can turn things around:

Keep and maintain the graph data in a graph database.
Regularly dump to HDFS and run larger analysis jobs there.

Or: Use ArangoDB’s Spark Connector:
https://github.com/arangodb/arangodb-spark-connector

https://github.com/arangodb/arangodb-spark-connector

Yet another approach

If your graph data changes rapidly in a transactional fashion...
Graph database as primary data store
You can turn things around:

Keep and maintain the graph data in a graph database.
Regularly dump to HDFS and run larger analysis jobs there.

Or: Use ArangoDB’s Spark Connector:
https://github.com/arangodb/arangodb-spark-connector

https://github.com/arangodb/arangodb-spark-connector

Links
Slides will be at: https://www.arangodb.com/speakers/max-neunhoeffer/

http://hadoop.apache.org/

http://spark.apache.org/

https://graphframes.github.io/

https://www.arangodb.com

https://github.com/arangodb/arangodb-spark-connector

Github: https://github.com/arangodb/ArangoDB (please star us!)
Twitter: @arangodb (please follow us!)

https://www.arangodb.com/speakers/max-neunhoeffer/
http://hadoop.apache.org/
http://spark.apache.org/
https://graphframes.github.io/
https://www.arangodb.com
https://github.com/arangodb/arangodb-spark-connector
https://github.com/arangodb/ArangoDB

