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One Engine, one Query Language.
Multiple Data Models.
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Running complex queries 
in a distributed system
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¡Hola, me llamo Jan!

I am programming since the mid-80s, moving from 8 bit computers, 
assembly language and other nice things to C++

As a former user of other databases I wrote a lot of SQL queries, 
especially for MySQL, Oracle and Microsoft products

Since January 2012 I am working for ArangoDB Inc. in Colonia, DE

ArangoDB Inc. is a database vendor, producing the distributed, 
multi-model NoSQL database named “ArangoDB”

About me
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ArangoDB is a multi-model NoSQL database

Runs in single-server mode or as distributed database

Allows working with JSON documents, graphs and key / values

Provides a rich query language (AQL) for getting your data back

Database data can be made accessible via custom REST APIs

About ArangoDB
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● Relational databases
● NoSQL databases
● Distributed ACID transactions
● Databases with distributed ACID transactions
● Q & A

Agenda
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My view may be biased

Due to the complexity of the topic, I will only include a few selected 
databases (no Hadoop, sorry!)

I may be generalizing too much

And I may go into details too much – stop me if it gets boring!

Disclaimer
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Relational databases
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Relational databases originated in the 1970s, now very mature

SQL (structured query language) came up as a standard means for 
querying and administrating relational databases

The vast majority of currently running databases are still relational

Examples: MySQL, ProgreSQL, SQLite, Oracle, SQL Server

Relational databases
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Most relational databases provide ACID transactions:

● Atomicity:
transactions either fully commit or fully abort

● Consistency:
the database transitions from one valid state to another

● Isolation:
concurrent transactions do not interfere with each other

● Durability:
data modifcations applied by transactions do not disappear

ACID transactions – properties



Copyright © ArangoDB Inc. , 2018

To produce consistent results, operations that access the same data 
need to be put into some order

In SQL this is controlled with the transaction isolation levels

The strongest isolation level in SQL is “serializability”, which guarantees 
that there are no amolies
A consequence of “serializability” is that any transactions that afect 
each other must be executed serially or be aborted (or retried)

ACID transactions with high isolation levels relieve developers from 
handling concurrency and consistency issues in their applications

Transaction isolation levels
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Wait...

What if scalability and high availability are required?

All good?
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Most relational databases are designed to run well on a single server

ACID transactions are really hard to scale out

In practice, scaling out was (and still is) not a good option with most 
relational databases

This leaves scaling up as a way to get more database capacity, 
but the scale-up path will end quickly

Relational databases – scalability
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To scale out anyway, many power users implemented custom sharding 
on top, in their client application layer

Ebay, Yahoo, Google, Facebook etc. all did this

That approach sacrifces the relational database’s ACID guarantees for 
any cross-shard operations/transactions

Relational databases – custom sharding
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Making a relational database resilient to server failure(s) can be 
challenging

Client application write operations are normally sent to the database 
master, which then replicates these writes to one or multiple slave 
servers:

● Asynchronous replication: 
slave may lag behind, reads from slave may produce stale data, 
potential data loss in case of master failure

● Synchronous replication: 
no slave lag, but puts an extra delay on all write operations

Relational databases – availability
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NoSQL databases
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As relational databases failed to meet the requirements of big data 
companies, they began implementing their own databases

These databases – termed “NoSQL” later on – addressed the two major 
issues that relational databases had: scalability and availability

NoSQL databases will take care of automatically distributing data, and 
also handle the failover automatically

Client applications do not need to implement client-side sharding 
anymore

NoSQL databases – background
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Most NoSQL databases scale horizontally by dividing the entire 
dataset into “shards”

The following two ways of sharding are used in practice to map the 
keys of the dataset unambiguously to shards:

● hash sharding
● range sharding 

The variant of sharding in use determines the types of queries that 
can be supported efciently (without consulting all shards)

Sharding
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A hash function is applied on each key

The hash value is reduced to a bounded value (e.g. number of shards) 
by a modulo operation: 

 shard(key) = hash(key) % number of shards

Very simple to implement, low overhead, normally balances well

Finding the shard for a given key is straightforward

Other operations (e.g. range lookups) need to check all shards

Hash sharding
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The dataset is split into sorted key ranges

Each range has a lower and upper bound of the keys it contains

To fnd the shard for a given key or range, a lookup table needs to be 
consulted: 

 shards(range) = lookup(range)

Needs an extra indirection via a lookup table – to remain balanced, 
ranges need to be split or merged when getting too big or too small

Range sharding



Copyright © ArangoDB Inc. , 2018

NoSQL implementations focused on the operations that are easy to 
scale out and make highly available

Hard-to-scale features – especially ACID transactions – were omitted 
intentionally in NoSQL databases

These design choices simplifed the implementations and made these 
databases scale well

NoSQL databases – design choices
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Most NoSQL databases provide strong guarantees only for single-key 
operations

Guarantees are weak or don’t exist for multi-key operations

Transactions from client applications normally contain operations that 
afect multiple keys

These will be executed as if they were single, unrelated operations

Client applications need to work around the lack of transactions!

NoSQL databases – guarantees
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Multi-key operations in NoSQL databases are normally

● non-atomic: 
no commit or rollback commands – they can fail somewhere 
in the middle without the database reverting them

● non-consistent: 
database may be inconsistent temporarily (eventual consistency), 
client applications are supposed to resolve conficts or clean up  

● non-isolated: 
operations will see modifcations from other parallel write 
operations, last write wins

NoSQL databases – issues
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Multi-key example

An example for a multi-key operation is to transfer a value from 
one record (key) to another

Two records (keys) participate in this operation:

● key “account_1”: start value: 25
● key “account_2”: start value: 50

We will transfer an amount of 10 from one account to the other

As it is just a transfer, the sum of values from both accounts 
should not change
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Multi-key example (all good)

(account_2 → account_1)

Read account_1: 25
Write account_1: 25 + 10 → 35
Read account_2: 50
Write account_2: 50 – 10 → 40

Start state: account_1: 25, account_2: 50, sum: 75
End state: account_1: 35, account_2: 40, sum: 75

Transfer succeeded!

ti
m

e
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Multi-key example (with crash)

(account_2 → account_1)

Read account_1: 25
Write account_1: 25 + 10 → 35

(server crash here, and restart)

Start state: account_1: 25, account_2: 50, sum: 75
End state: account_1: 35, account_2: 50, sum: 85

Data lost, no way to recover from there!

ti
m

e
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Multi-key example (with concurrency)

(account_2 → account_1) (account_1 → account_2)

Read account_1: 25 Read account_1: 25
Write account_1: 25 + 10 → 35

Write account_1: 25 – 10 → 15
Read account_2: 50 Read account_2: 50

Write account_2: 50 + 10 → 60
Write account_2: 50 – 10 → 40

Start state: account_1: 25, account_2: 50, sum: 75
End state: account_1: 15, account_2: 40, sum: 55

Data is inconsistent now due to lost updates!

ti
m

e
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To mitigate the problems with read-then-update operations, 
several NoSQL databases provide atomic CAS operations

These only modify a value if a certain precondition is satisifed

With compare-and-swap, reading and updating a value
is fused into a single operation, which is guaranteed to be atomic

Compare-and-swap (CAS) operations
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From the MongoDB manual:

“For situations that require multi-document transactions, you can 
implement two-phase commit in your application to provide support for 
these kinds of multi-document updates. Using two-phase commit 
ensures that data is consistent and, in case of an error, the state that 
preceded the transaction is recoverable. During the procedure, 
however, documents can represent pending data and states.”

https://docs.mongodb.com/manual/tutorial/perform-two-phase-commits/

“Real world” multi-key example
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NoSQL databases solved the problems of scalability and availability 
to a great extent

But they put back the burden of handling consistency and isolation 
(i.e. transaction management) on client application developers

NoSQL databases – achievements
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Distributed ACID 
transactions
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Newer attempts try to bring together the best of both worlds:

● scalability and availability improvements brought by NoSQL
● ACID guarantees and transactions from relational databases

The databases that try to achieve this are often called “NewSQL” 
(though some of them do not provide a SQL interface at all)

Examples include VoltDB and FoundationDB (not covered here), 
CockroachDB, Google Spanner, FaunaDB

NewSQL databases
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From the CockroachDB docs:

“Above all else, CockroachDB believes consistency is the most 
important feature of a database – without it, developers cannot build 
reliable tools, and businesses sufer from potentially subtle and hard to 
detect anomalies.”

https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer.html

CockroachDB’s view on consistency
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From the Google Spanner paper:

“We believe it is better to have application programmers deal with 
performance problems due to overuse of transactions as bottlenecks 
arise, rather than always coding around the lack of transactions.”

https://research.google.com/archive/spanner.html

Spanner’s take on transactions
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In a distributed system, ACID transactions need to take into account 
that there are multiple nodes participating

● Atomicity:
all nodes agree on the transaction status (e.g. committed / aborted)

● Consistency:
create a consistent snapshot of data across multiple nodes

● Isolation:
hide ongoing concurrent transactions until commit

● Durability:
gracefully handle node failures and stay available

ACID transactions – now distributed
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The implementation of distributed ACID transactions requires:

● a single (but replicated) place that controls transaction statuses
● use of MVCC (or similar means) with transaction timestamps for 

concurrency control and confict resolution
● replication of all writes to all replica nodes or a majority of those

In order to be resilient and handle node failures, a distributed database 
always needs to write transaction data to multiple nodes

The overhead of distributed ACID transactions is unavoidably higher 
than the overhead of plain local transactions

Distributed ACID transactions
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In a distributed database, the diferent nodes of a cluster need to agree 
on things, e.g. if a specifc transaction has committed or not

Consensus is relatively easy if there are no failures, but it’s hard if

● the network has outages or partitions
● the network drops, duplicates or delays packages
● servers fail and do not come back again (fail-stop)
● servers fail and come back with (old) data (fail-recover)

Consensus
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Diferent protocols are in use for reaching consensus
 
The most commonly used protocols are

● two-phase commit (2PC) (197x)
● three-phase commit (3PC) (1983)
● the Paxos consensus protocol (1998)
● the RAFT protocol (2013)
● modifed variants of those

Paxos and RAFT are proven to be correct, 2PC and 3PC have issues

Consensus protocols
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In a distributed database, the nodes in a cluster also need to agree 
on the sequence of events, e.g. for transaction ordering and 
confict resolution

Ordering transactions is a requirement to linearize concurrent 
transactions that access the same data, but start and commit on 
diferent nodes

What is required is an unambiguous global (cross-node) sequence of 
events, e.g. to order all transactions into a lineralizable sequence 

Synchronization of time



Copyright © ArangoDB Inc. , 2018

Ordinary mortals use NTP to synchronize the clocks of diferent servers, 
which may produce a clock skew of two- or three-digit milliseconds

Google works around large clock skews in their datacenters by using 
GPS receivers and atomic clocks 

Even that does not completely eliminate clock skew, but allows to keep 
it really low (single-digit milliseconds values)

If clock skew is bounded, two timestamps from diferent nodes can be 
compared if they are farther apart that the uncertainty window 
(maximum tolerable clock diference)

Synchronization of time
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Extra measures are needed to remove uncertainty about timestamps 
from diferent nodes that are very close together:

● wait (and / or retry with an adjusted timestamp) until the 
uncertainty window has passed

● use clock values that contain causilities (happens-before 
relationships) 

Timestamp comparsions
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The idea of hybrid logical clocks is to use timestamps that have

● a physical component: current wall clock time
● a logical component: used to distinguish between events with same 

physical component

Normally one uses a single integer value to store both components, 
devoting the majority of bits to physical time, e.g.

 HLC timestamp = 48 bits for physical time + 16 bits for logical time

HLC timestamp >= wall clock time

Hybrid logical clocks (HLC)



Copyright © ArangoDB Inc. , 2018

Whenever a message is exchanged between nodes, it contains the 
sender’s HLC timestamp

The receiver makes sure its own HLC timestamp is higher than the one 
of the sender

That way the causality is also preserved in the HLC timestamps:
the cause will have a smaller HLC timestamp than the efect

By comparing the HLC timestamps of causally linked events from 
diferent servers it is possible to determine which one was earlier 
(happens-before relationship)

Hybrid logical clocks – causality
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Databases with 
distributed ACID 
transactions
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CockroachDB is an open-source distributed SQL database

Acts like a relational database to a user, as it provides databases, 
tables and columns, constraints etc.

Internally it is a key / value store based on RocksDB
 
Provides distributed ACID transactions with isolation level “serializable”

It uses HLC timestamps for transaction timestamps and bringing them 
into an order

CockroachDB – overview
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Data is partionitioned by key into non-overlapping “ranges”

Each range contains the sorted keys plus the mapped values

Range -∞..es Range et..in Range iu..∞
ar → Argentina et → Ethiopia  jm → Jamaica  
at → Austria fj → Fiji pm → Panama
be → Belgium in → India sk → Slovakia
es → Spain it → Italy

Ranges are automatically split into subranges when getting too big, 
and replicated to a confgurable amount of replicas for resilience

CockroachDB – ranges
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Transactions are started by client applications at a coordinator node

A transaction is assigned the current HLC timestamp of the coordinator 
node as its provisional commit timestamp

A transaction is then executed in the following phases:

● execution of write and read operations
● commit / rollback
● garbage collection / cleanup

CockroachDB – transaction processing
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Write transactions frst store a transaction record with the current 
transaction’s status (“PENDING”) in the frst range written to

All write operations are stored as “write intents” via MVCC, 
along with the transaction id

Write intents get converted into “real” values when the transaction 
commits – they are provisional until the commit

Writes are written to multiple servers using RAFT instances

CockroachDB – write and read operations
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Writes and reads need to check for conficts that would violate 
serializability of transactions

Before storing write intents, there will be a confict detection with other 
write intents and successfully committed newer writes for same keys

Read operations also check for conficts with write intents

In case of a confict, it is resolved and / or the transaction is retried

CockroachDB – conficts
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If a transaction fnds another running transaction’s write intent for the 
same key, it is a write-write confict
 
Transaction 1 Transaction 2 
begin begin
write key account_1

write key account_1

If the conficting transaction (T1) has a lower priority, it will be aborted – 
otherwise the current transaction (T2) will be retried with increased 
priority 

CockroachDB – conficts (WW)
ti

m
e
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If a transaction fnds a more recent committed value for the same key, 
it is a write-write confict
 
Transaction 1 Transaction 2 
 begin
begin
write key account_1
commit

write key account_1

The later transaction (T2) will be retried with a higher timestamp 

CockroachDB – conficts (WW)
ti

m
e
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A confict arises when a reader fnds a write intent of a running 
transaction with a lower timestamp (HLC write < HLC read)

Transaction 1 Transaction 2 
begin
write key account_1
 read key account_1

If the reader (T2) has a higher priority, the write transaction (T1) 
will be retried with a higher timestamp

Otherwise the read transaction (T2) will retry with a new timestamp

CockroachDB – conficts (RW)
ti

m
e
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It’s a confict when a reader fnds a committed value or a write intent 
of a running transaction with a slightly higher timestamp (within the 
uncertainty interval) (HLC write > HLC read)
This can happen if the clock of the writer is ahead of the reader’s clock
 
Transaction 1 Transaction 2 
begin
write key account_1

read key account_1

It is uncertain if the read or write was frst, so the read transaction (T2) 
will retry with a higher timestamp

CockroachDB – conficts (RW)
ti

m
e



Copyright © ArangoDB Inc. , 2018

It’s a confict when a writer writes a key that was read with a higher 
timestamp (HLC write < HLC read)
This can happen if the clock of the reader is ahead of the writer’s clock
 
Transaction 1 Transaction 2 
begin
 read key account_1
write key account_1

It is uncertain if the read or write was frst, so the write transaction (T1) 
will retry with a higher timestamp

CockroachDB – conficts (RW)
ti

m
e
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A transaction will only be commited if it’s not aborted and none 
of the participating nodes has bumped its timestamp

In case of a timestamp bump, the transaction is started again 
with the adjusted timestamp as its provisional commit timestamp

When a transaction commits, there is a fnal atomic fip of the 
transaction status in the transaction record from “PENDING” to 
“COMMITTED”

CockroachDB – commits
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After the commit, the write intents of the transaction are cleaned up 
asynchronously and turned into “real” MVCC values

Outdated MVCC versions will be removed after a confgurable interval 
(24h by default)

As long as older MVCC versions are present, time travel queries are 
supported

CockroachDB – cleanup
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Queries are parallelized to execute concurrently on multiple shards 
where possible

Results from individual shards may need to be aggregated on a 
coordinator in case of GROUP BY, SORT BY

Pushing as much work as possible to the shards reduces amount of 
data to be transferred back from the shards to the coordinator 
(WHERE, GROUP BY)

CockroachDB – query execution
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Distributed cloud database by Google with ACID transactions

Ofered to the public as commercial service “Google Cloud spanner”

Closed source (but CockroachDB is an open-source clone of it)

Support for SQL select queries, data modifcation operations have 
custom APIs

Spanner – overview
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Uses Google’s datacenter infrastructure with GPS receivers and atomic 
clocks to minimize the clock deviations between nodes of a cluster

Uses an internal API (TrueTime) to determine bounds for the timestamp 
uncertainty interval:

● lower bound: timestamp that is defnitely in the past
● upper bound: timestamp that is defnitely in the future

Delays commits (commit wait) during the uncertainty interval

Spanner – overview
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Distributed, deterministic database

Based on the Calvin paper for distributed transactions:
http://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf

Does not replicate transaction results (modifcations done by the 
transaction) but transaction inputs (operations to be carried out) 

Transaction inputs are globally ordered in a deterministic way

Client applications need to describe the complete read and write 
operations for a transaction when submitting it

FaunaDB – overview
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Client applications can send transaction requests to any node

A sequencer on each node will frst batch all incoming transaction 
requests in the order they come in

This is done for every epoch (10ms by default)

All sequencers replicate their locally accumulated batches for the 
epoch to failover nodes using RAFT

FaunaDB – sequencing
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Sequencers analyze the transaction inputs to determine the read and 
write sets for the transactions of an epoch

Then they send the transaction inputs to all nodes participating in the 
transaction for execution

The schedulers on all nodes will then put together a global transaction 
order (all transaction inputs) from all sequencers for the same epoch

This is done by interleaving all batches for the epoch in a round-robin, 
but deterministic manner

FaunaDB – sequencing
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After the transactions and their order for an epoch are determined, the 
scheduler will execute them one by one

Execution of transactions can be parallelized for unrelated transactions, 
but dependent transactions are executed in strict order, each in the 
following phases:

● acquisition of locks for all local keys accessed by the transaction
● performing all reads for all local keys
● serving / collecting remote reads
● execution of transaction logic and application of writes
● releasing locks

FaunaDB – transaction execution
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By using the concept of epochs and delaying all incoming transaction 
requests until the epoch is fnished, FaunaDB can get around the 
problem of the diferent nodes in the cluster having deviating clocks

The nodes in the cluster only have to agree on which is the current 
epoch

Transaction execution order is deterministic, so all replicas will produce 
the same transaction results

FaunaDB – transaction execution
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¡Thanks!

¿Any questions?
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Consensus protocols:
http://lamport.azurewebsites.net/pubs/lamport-paxos.pdf
http://the-paper-trail.org/blog/consensus-protocols-paxos/
https://raft.github.io/raft.pdf
https://www.microsoft.com/en-us/research/publication/consensus-on-transaction-commit

Hybrid logical clocks (HLC):
http://www.cse.bufalo.edu/tech-reports/2014-04.pdf

Links
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CockroachDB:
https://www.cockroachlabs.com/

Google Spanner:
https://research.google.com/archive/spanner.html
https://cloud.google.com/spanner

Calvin / FaunaDB:
http://cs.yale.edu/homes/thomson/publications/calvin-sigmod12.pdf
https://fauna.com/

Links
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