
+ +

Handling Billions Of Edges in
a Graph Database

About me

‣ Michael Hackstein

‣ ArangoDB Core Team

‣ Graph visualisation

‣ Graph features

‣ SmartGraphs

‣ Host of cologne.js

‣ Master’s Degree (spec. Databases and  
Information Systems)

What are Graph Databases

{
 name: "alice",
 age: 32
}

{
 name: "dancing"
}

{
 name: "bob",
 age: 35,
 size: 1,73m
}

{
 name: "reading"
}

{
 name: "fishing"
}

hobby

hobby

hobby

ho
bb

y

‣ Schema-free Objects (Vertices)
‣ Relations between them (Edges)

‣ Edges have a direction

What are Graph Databases

{
 name: "alice",
 age: 32
}

{
 name: "dancing"
}

{
 name: "bob",
 age: 35,
 size: 1,73m
}

{
 name: "reading"
}

{
 name: "fishing"
}

hobby

hobby

hobby

ho
bb

y

‣ Schema-free Objects (Vertices)
‣ Relations between them (Edges)

‣ Edges have a direction

‣ Edges can be queried in both directions

‣ Easily query a range of edges (2 to 5)

‣ Undefined number of edges (1 to *)
‣ Shortest Path between two vertices

Bob

Charly Dave

Typical Graph Queries

‣ Give me all friends of Alice

Alice

Eve Frank

BobBob

Charly DaveCharly Dave

Typical Graph Queries

‣ Give me all friends of Alice

Alice

Eve FrankEve Frank

FrankEve

Alice

Bob

Charly Dave

Typical Graph Queries

‣ Give me all friends-of-friends of Alice

FrankFrankEveEve

Alice

Bob

Charly Dave

Typical Graph Queries

‣ Give me all friends-of-friends of Alice

Bob

Charly Dave

You are
here

‣ Which Train Stations can I reach if I am allowed to drive a distance of at most 6
stations on my ticket

Typical Graph Queries

You are
here

‣ Which Train Stations can I reach if I am allowed to drive a distance of at most 6
stations on my ticket

Typical Graph Queries

Friend

‣ Give me all users that share two hobbies with Alice

Typical Graph Queries: Pattern Matching

Alice

Hobby1 Hobby2

FriendFriend

‣ Give me all users that share two hobbies with Alice

Typical Graph Queries: Pattern Matching

Alice

Hobby1 Hobby2

ProductAlice

Product

Friend

‣ Give me all products that at least one of my friends has bought together with the
products I already own, ordered by how many friends have bought it and the
products rating, but only 20 of them.

Typical Graph Queries: Pattern Matching

has_bought has
_b

ough
t

has_boughtis_friend

ProductAlice

Product

Friend

‣ Give me all products that at least one of my friends has bought together with the
products I already own, ordered by how many friends have bought it and the
products rating, but only 20 of them.

Typical Graph Queries: Pattern Matching

has_bought has
_b

ough
t

has_boughtis_friend
Product

Non-Typical Graph Queries

Non-Typical Graph Queries

‣ Give me all users which have an age attribute between 21 and 35.

Non-Typical Graph Queries

‣ Give me all users which have an age attribute between 21 and 35.
‣ Give me the age distribution of all users

Non-Typical Graph Queries

‣ Give me all users which have an age attribute between 21 and 35.
‣ Give me the age distribution of all users
‣ Group all users by their name

Traversal - Iterate down two edges with some filters

Traversal - Iterate down two edges with some filters

‣ We first pick a start vertex (S)

S

Traversal - Iterate down two edges with some filters

‣ We first pick a start vertex (S)
‣ We collect all edges on S

B
CA

S

Traversal - Iterate down two edges with some filters

‣ We first pick a start vertex (S)
‣ We collect all edges on S
‣ We apply filters on edges

B
CA

SS

A B

Traversal - Iterate down two edges with some filters

‣ We first pick a start vertex (S)
‣ We collect all edges on S
‣ We apply filters on edges
‣ We iterate down one of the new vertices (A)

D
E

B
CA

SS

A B

Traversal - Iterate down two edges with some filters

‣ We first pick a start vertex (S)
‣ We collect all edges on S
‣ We apply filters on edges
‣ We iterate down one of the new vertices (A)
‣ We apply filters on edges

D
E

B
CA

SS

E

A B

Traversal - Iterate down two edges with some filters

‣ We first pick a start vertex (S)
‣ We collect all edges on S
‣ We apply filters on edges
‣ We iterate down one of the new vertices (A)
‣ We apply filters on edges
‣ The next vertex (E) is in desired depth.

Return the path S -> A -> E

D
E

B
CA

SS

E

A B

Traversal - Iterate down two edges with some filters

‣ We first pick a start vertex (S)
‣ We collect all edges on S
‣ We apply filters on edges
‣ We iterate down one of the new vertices (A)
‣ We apply filters on edges
‣ The next vertex (E) is in desired depth.

Return the path S -> A -> E
‣ Go back to the next unfinished vertex (B)D

E

B
CA

SS

E

A B

Traversal - Iterate down two edges with some filters

‣ We first pick a start vertex (S)
‣ We collect all edges on S
‣ We apply filters on edges
‣ We iterate down one of the new vertices (A)
‣ We apply filters on edges
‣ The next vertex (E) is in desired depth.

Return the path S -> A -> E
‣ Go back to the next unfinished vertex (B)
‣ We iterate down on (B)

D
E F

B
CA

SS

E

A B

Traversal - Iterate down two edges with some filters

‣ We first pick a start vertex (S)
‣ We collect all edges on S
‣ We apply filters on edges
‣ We iterate down one of the new vertices (A)
‣ We apply filters on edges
‣ The next vertex (E) is in desired depth.

Return the path S -> A -> E
‣ Go back to the next unfinished vertex (B)
‣ We iterate down on (B)
‣ We apply filters on edges

D
E F

B
CA

SS

E

A

F

B

Traversal - Iterate down two edges with some filters

‣ We first pick a start vertex (S)
‣ We collect all edges on S
‣ We apply filters on edges
‣ We iterate down one of the new vertices (A)
‣ We apply filters on edges
‣ The next vertex (E) is in desired depth.

Return the path S -> A -> E
‣ Go back to the next unfinished vertex (B)
‣ We iterate down on (B)
‣ We apply filters on edges
‣ The next vertex (F) is in desired depth.

Return the path S -> B -> F

D
E F

B
CA

SS

E

A

F

B

Traversal - Complexity

‣ Once:
‣ Find the start vertex (O(1) Hash-Index)

‣ For every depth:
‣ Find all connected edges (O(1) Edge-Index)
‣ Filter non-matching edges (O(n) linear scan)
‣ Find connected vertices (O(n)*O(1) linear scan + Hash-Index)
‣ Filter non-matching vertices (O(n) linear-scan)
‣ TOTAL: O(3n)
‣ For every input: produces n more vertices for next depth

Traversal - Complexity

‣ Linear sounds evil?
‣ NOT linear in All Edges O(E)
‣ Only Linear in relevant Edges n < E

‣ Traversals solely scale with their result size
‣ They are not effected at all by total amount of data
‣ BUT: Every depth increases the exponent: O(3*nd)
‣ "7 degrees of separation": 3*n6 < E < 3*n7

‣ MULTI-MODEL database
‣ Stores Key Value, Documents, and Graphs
‣ All in one core

‣ Query language AQL
‣ Document Queries

‣ Graph Queries

‣ Joins

‣ All can be combined in the same statement

‣ ACID support including Multi Collection Transactions

+ +

AQL

FOR user IN users
 RETURN user

AQL

FOR user IN users
 FILTER user.name == "alice"
 RETURN user

Alice

AQL

FOR user IN users
 FILTER user.name == "alice"
 FOR product IN OUTBOUND user has_bought
 RETURN product

Alice

AQL

FOR user IN users
 FILTER user.name == "alice"
 FOR product IN OUTBOUND user has_bought
 RETURN product

Alice
has_bought

TV

AQL

FOR user IN users
 FILTER user.name == "alice"
 FOR recommendation, action, path IN 3 ANY user has_bought
 FILTER path.vertices[2].age <= user.age + 5
 AND path.vertices[2].age >= user.age - 5
 FILTER recommendation.price < 25
 LIMIT 10
 RETURN recommendation

Alice
has_bought

TV

AQL

FOR user IN users
 FILTER user.name == "alice"
 FOR recommendation, action, path IN 3 ANY user has_bought
 FILTER path.vertices[2].age <= user.age + 5
 AND path.vertices[2].age >= user.age - 5
 FILTER recommendation.price < 25
 LIMIT 10
 RETURN recommendation

Alice
has_bought

TV
has_bought

playstation.price < 25

PlaystationBob

alice.age - 5 <= bob.age &&
bob.age <= alice.age + 5

has_bought

Challenge 1: Supernodes

‣ Many graphs have "celebrities"

‣ Vertices with many inbound and/or outbound edges

‣ Traversing over them is expensive (linear in number of Edges)

‣ Often you only need a subset of edges

Bob Alice

‣ Remember Complexity? O(3 * nd)
‣ Filtering of non-matching edges is linear for every depth

‣ Index all edges based on their vertices and arbitrary other attributes
‣ Find initial set of edges in identical time
‣ Less / No post-filtering required
‣ This decreases the n significantly

First Boost - Vertex Centric Indices

Alice

Challenge 2: Big Data

‣ We have the rise of big data
‣ Store everything you can

‣ Dataset easily grows beyond one machine
‣ This includes graph data!

Scaling

‣ Distribute graph on several machines (sharding)

‣ How to query it now?
‣ No global view of the graph possible any more
‣ What about edges between servers?

‣ In a sharded environment network most of the time is the bottleneck
‣ Reduce network hops

‣ Vertex-Centric Indexes again help with super-nodes
‣ But: Only on a local machine

Now distribute
the graph

Dangers of Sharding

‣ Only parts of the graph on every machine
‣ Neighboring vertices may be on different machines
‣ Even edges could be on other machines than their vertices

‣ Queries need to be executed in a distributed way
‣ Result needs to be merged locally

Random Distribution

‣ Advantages:
‣ every server takes an equal portion of

data
‣ easy to realize
‣ no knowledge about data required
‣ always works

‣ Disadvantages:
‣ Neighbors on different machines
‣ Probably edges on other machines than

their vertices
‣ A lot of network overhead is required for

querying

Random Distribution

‣ Advantages:
‣ every server takes an equal portion of

data
‣ easy to realize
‣ no knowledge about data required
‣ always works

‣ Disadvantages:
‣ Neighbors on different machines
‣ Probably edges on other machines than

their vertices
‣ A lot of network overhead is required for

querying

Index-Free Adjacency

‣ Used by most other graph databases
‣ Every vertex maintains two lists of it's edges (IN and OUT)
‣ Do not use an index to find edges
‣ How to shard this?

Index-Free Adjacency

‣ Used by most other graph databases
‣ Every vertex maintains two lists of it's edges (IN and OUT)
‣ Do not use an index to find edges
‣ How to shard this?

Index-Free Adjacency

‣ Used by most other graph databases
‣ Every vertex maintains two lists of it's edges (IN and OUT)
‣ Do not use an index to find edges
‣ How to shard this?

Index-Free Adjacency

‣ Used by most other graph databases
‣ Every vertex maintains two lists of it's edges (IN and OUT)
‣ Do not use an index to find edges
‣ How to shard this?

????

Index-Free Adjacency

‣ ArangoDB uses an hash-based EdgeIndex (O(1) - lookup)
‣ The vertex is independent of it's edges
‣ It can be stored on a different machine

‣ Used by most other graph databases
‣ Every vertex maintains two lists of it's edges (IN and OUT)
‣ Do not use an index to find edges
‣ How to shard this?

????

Domain Based Distribution

‣ Many Graphs have a natural distribution
‣ By country/region for People
‣ By tags for Blogs
‣ By category for Products

‣ Most edges in same group
‣ Rare edges between groups

Domain Based Distribution

‣ Many Graphs have a natural distribution
‣ By country/region for People
‣ By tags for Blogs
‣ By category for Products

‣ Most edges in same group
‣ Rare edges between groups

Domain Based Distribution

‣ Many Graphs have a natural distribution
‣ By country/region for People
‣ By tags for Blogs
‣ By category for Products

‣ Most edges in same group
‣ Rare edges between groups

ArangoDB Enterprise Edition
uses Domain Knowledge  

for short-cuts

SmartGraphs - How it works

DB Server 1 DB Server 2 DB Server n

Coordinator

Foxx

Coordinator

Foxx

SmartGraphs - How it works

DB Server 1 DB Server 2 DB Server n

Coordinator

Foxx

Coordinator

Foxx

SmartGraphs - How it works

DB Server 1 DB Server 2 DB Server n

Coordinator

Foxx

Coordinator

Foxx

‣ Please star us on github: www.github.com/arangodb/arangodb

‣ Further questions?
‣ Follow us on twitter: @arangodb
‣ Join our slack: slack.arangodb.com
‣ Follow me on twitter/github: @mchacki
‣ This slides will be updated to www.arangodb.com/speakers/michael-hackstein/

Thank You

http://www.github.com/arangodb/arangodb
http://slack.arangodb.com
http://www.arangodb.com/speakers/michael-hackstein/

